
Package: biscale (via r-universe)
September 5, 2024

Type Package

Title Tools and Palettes for Bivariate Thematic Mapping

Version 1.1.0.9000

Description Provides a 'ggplot2' centric approach to bivariate
mapping. This is a technique that maps two quantities
simultaneously rather than the single value that most thematic
maps display. The package provides a suite of tools for
calculating breaks using multiple different approaches, a
selection of palettes appropriate for bivariate mapping and
scale functions for 'ggplot2' calls that adds those palettes to
maps. Tools for creating bivariate legends are also included.

Depends R (>= 3.5)

License GPL-3

URL https://chris-prener.github.io/biscale/

BugReports https://github.com/chris-prener/biscale/issues

Encoding UTF-8

LazyData true

Imports classInt, ggplot2

RoxygenNote 7.2.0

Suggests covr, cowplot, knitr, rmarkdown, showtext, sf, testthat

VignetteBuilder knitr

Repository https://chris-prener.r-universe.dev

RemoteUrl https://github.com/chris-prener/biscale

RemoteRef HEAD

RemoteSha 4457dd13392a89a66d93050b28f9c7907e78f63f

1

https://chris-prener.github.io/biscale/
https://github.com/chris-prener/biscale/issues

2 bi_class

Contents
bi_class . 2
bi_class_breaks . 3
bi_legend . 5
bi_pal . 7
bi_scale_color . 9
bi_scale_fill . 10
bi_theme . 11
stl_race_income . 12
stl_race_income_point . 13

Index 14

bi_class Create Classes for Bivariate Maps

Description

Creates mapping classes for a bivariate map. These data will be stored in a new variable
named bi_class, which will be added to the given data object.

Usage

bi_class(.data, x, y, style, dim = 3, keep_factors = FALSE, dig_lab = 3)

Arguments

.data A data frame, tibble, or sf object
x The x variable, either a numeric (including double and integer classes) or

factor
y The y variable, either a numeric (including double and integer classes) or

factor
style A string identifying the style used to calculate breaks. Currently sup-

ported styles are "quantile", "equal", "fisher", and "jenks". If both
x and y are factors, this argument can be omitted.
Note that older versions of biscale used "quantile" as the default for
this argument. Now that bi_class accepts factors, this argument no
longer as a default and older code will error.

dim The dimensions of the palette. To use the built-in palettes, this value
must be either 2, 3, or 4. A value of 3, for example, would be used to
create a three-by-three bivariate map with a total of 9 classes.
If you are using a custom palette, this value may be larger (though these
maps can be very hard to interpret).
If you are using pre-made factors, both factors must have the same number
of levels as this value.

bi_class_breaks 3

keep_factors A logical scalar; if TRUE, the intermediate factor variables created as part
of the calculation of bi_class will be retained. If FALSE (default), they
will not be returned.

dig_lab An integer that is passed to base::cut()

Value

A copy of .data with a new variable bi_class that contains combinations of values that
correspond to an observations values for x and y. This is the basis for applying a bivariate
color palette.

Examples
quantile breaks, 2x2
data <- bi_class(stl_race_income, x = pctWhite, y = medInc, style = "quantile", dim = 2)

summarize quantile breaks, 2x2
table(data$bi_class)

quantile breaks, 3x3
data <- bi_class(stl_race_income, x = pctWhite, y = medInc, style = "quantile", dim = 3)

summarize quantile breaks, 3x3
table(data$bi_class)

bi_class_breaks Return Breaks

Description

This function can be used to return a list containing vectors of either the ranges of values
included in each category of x and y or, alternatively, the individual break values including
the minimum and maximum values. This function supports simplified reporting as well as
more descriptive legends.

Usage

bi_class_breaks(.data, x, y, style, dim = 3, clean_levels = TRUE,
dig_lab = 3, si_levels = FALSE, split = FALSE)

Arguments

.data A data frame, tibble, or sf object
x The x variable, either a numeric (including double and integer classes) or

factor
y The y variable, either a numeric (including double and integer classes) or

factor

4 bi_class_breaks

style A string identifying the style used to calculate breaks. Currently sup-
ported styles are "quantile" (default), "equal", "fisher", and "jenks".
If both x and y are factors, this argument can be omitted.

dim The dimensions of the palette. To use the built-in palettes, this value
must be either 2, 3, or 4. A value of 3, for example, would be used to
create a three-by-three bivariate map with a total of 9 classes.
If you are using a custom palette, this value may be larger (though these
maps can be very hard to interpret).
If you are using pre-made factors, both factors must have the same number
of levels as this value.

clean_levels A logical scalar; if TRUE (default), the brackets and parentheses will be
stripped from the output. If FALSE (default), the levels will be returned
with brackets and parentheses. If split is TRUE and clean_levels is
FALSE, the clean_levels argument will be overridden.

dig_lab An integer that is passed to base::cut(); it determines the number of
digits used in formatting break numbers. It can either be a scalar or
a vector. If it is a scalar, the value will be applied to both the x and
y variables. If it is a vector, the first element will be applied to the x
variable and the second will be applied to the y variable.

si_levels A logical scalar or vector of length 2 that where TRUE, and taking into
account dig_lab (default = 3), rounds the level(s) and applies one of a few
selected SI prefixes, if appropriate. Affects either or both the display of
the x and y variables based on the same syntax as the dig_lab parameter.
Defaults to FALSE (no adjustment to either variable).

split A logical scalar; if FALSE (default), the range of values for each factor
level (corresponds to dim) will be returned for both the x and y variables.
If TRUE, the individual values for each break (including the minimum and
maximum values) will be returned.

Value

A list where bi_x is a vector containing the breaks for the x variable and bi_y is a vector
containing the breaks for the y variable.

Examples
return ranges for each category of x and y
bi_class_breaks(stl_race_income, style = "quantile", x = pctWhite, y = medInc,

dim = 4, dig_lab = c(4, 5), split = FALSE)

ranges can be returned with brackets and parentheses
bi_class_breaks(stl_race_income, style = "quantile", x = pctWhite, y = medInc,

clean_levels = FALSE, dim = 4, dig_lab = 3, split = FALSE)

return breaks for each category of x and y
bi_class_breaks(stl_race_income, style = "quantile", x = pctWhite, y = medInc,

dim = 4, dig_lab = c(4, 5), split = TRUE)

bi_legend 5

show SI prefix
bi_class_breaks(stl_race_income, style = "quantile", x = pctWhite, y = medInc,

dim = 4, dig_lab = c(4, 5), si_levels = c(y = TRUE), split = TRUE)

optionally name vector for dig_lab for increased clarity of code
bi_class_breaks(stl_race_income, style = "quantile", x = pctWhite, y = medInc,

dim = 4, dig_lab = c(x = 4, y = 5), split = TRUE)

scalars can also be used for dig_lab, though results may be less optimal
bi_class_breaks(stl_race_income, style = "quantile", x = pctWhite, y = medInc,

dim = 4, dig_lab = 3, split = TRUE)

bi_legend Create Object for Drawing Legend

Description

Creates a ggplot object containing a legend that is specific to bivariate mapping.

Usage

bi_legend(pal, dim = 3, xlab, ylab, size = 10, flip_axes = FALSE,
rotate_pal = FALSE, pad_width = NA, pad_color = "#ffffff",
breaks = NULL, arrows = TRUE, base_family = "sans")

Arguments

pal A palette name or a vector containing a custom palette. See the help file
for bi_pal for complete list of built-in palette names. If you are providing
a custom palette, it must follow the formatting described in the ’Advanced
Options’ vignette.

dim The dimensions of the palette. To use the built-in palettes, this value
must be either 2, 3, or 4. A value of 3, for example, would be used to
create a three-by-three bivariate map with a total of 9 classes.
If you are using a custom palette, this value may be larger (though these
maps can be very hard to interpret). See the ’Advanced Options’ vignette
for details on the relationship between dim values and palette size.

xlab Text for desired x axis label on legend
ylab Text for desired y axis label on legend
size A numeric scalar; size of axis labels
flip_axes A logical scalar; if TRUE, the axes of the palette will be flipped. If FALSE

(default), the palette will be displayed on its original axes. Custom
palettes with ’dim’ greater than 4 cannot take advantage of flipping axes.

6 bi_legend

rotate_pal A logical scalar; if TRUE, the palette will be rotated 180 degrees. If FALSE
(default), the palette will be displayed in its original orientation. Cus-
tom palettes with ’dim’ greater than 4 cannot take advantage of palette
rotation.

pad_width An optional numeric scalar; controls the width of padding between tiles
in the legend

pad_color An optional character scalar; controls the color of padding between tiles
in the legend

breaks An optional list created by bi_class_breaks. Depending on the options
selected when making the list, labels will placed showing the correspond-
ing range of values for each axis or, if split = TRUE, showing the individ-
ual breaks.

arrows A logical scalar; if TRUE (default), directional arrows will be added to
both the x and y axes of the legend. If you want to suppress these arrows,
especially if you are supplying breaks to create a more detailed legend,
this parameter can be set of FALSE.

base_family A character string; by default, it is set to "sans", which has been the
font used in biscale since its initial release. If you are using non-Latin
characters, you may need to set base_family = "" to get your characters
to display. Other options include "mono" and "serif". See the Breaks
and Legends vignette for details.

Value

A ggplot object with a bivariate legend.

See Also

bi_pal

Examples
sample 3x3 legend
legend <- bi_legend(pal = "GrPink",

dim = 3,
xlab = "Higher % White ",
ylab = "Higher Income ",
size = 16)

print legend
legend

sample 3x3 legend with breaks
create vector of breaks
break_vals <- bi_class_breaks(stl_race_income, style = "quantile",

x = pctWhite, y = medInc, dim = 3, dig_lab = c(x = 4, y = 5),
split = TRUE)

create legend

bi_pal 7

legend <- bi_legend(pal = "GrPink",
dim = 3,
xlab = "Higher % White ",
ylab = "Higher Income ",
size = 16,
breaks = break_vals,
arrows = FALSE)

print legend
legend

sample 3x3 legend with Chinese characters
set language preference
showtext::showtext_auto()

create legend
legend <- bi_legend(pal = "GrPink",

dim = 3,
xlab = "�� ",
ylab = "�� ",
size = 16,
base_family = "")

print legend
legend

bi_pal Preview Palettes and Hex Values

Description

Prints either a visual preview of each palette or the associated hex values.

Usage

bi_pal(pal, dim = 3, preview = TRUE, flip_axes = FALSE, rotate_pal = FALSE)

Arguments

pal A palette name or a vector containing a custom palette. If you are
providing a palette name, it must be one of: "Bluegill", "BlueGold",
"BlueOr", "BlueYl", "Brown"/"Brown2", "DkBlue"/"DkBlue2", "DkCyan"/"DkCyan2",
"DkViolet"/"DkViolet2", "GrPink"/"GrPink2", "PinkGrn", "PurpleGrn",
or "PurpleOr".
Pairs of palettes, such as "GrPink"/"GrPink2", are included for legacy
support. The numbered palettes support four-by-four bivarite maps while
the un-numbered ones, which were the five included in the original release
of the package, only support two-by-two and three-by-three maps.

8 bi_pal

If you are providing a custom palette, it must follow the formatting de-
scribed in the ’Advanced Options’ vignette.

dim The dimensions of the palette. To use the built-in palettes, this value
must be either 2, 3, or 4. A value of 3, for example, would be used to
create a three-by-three bivariate map with a total of 9 classes.
If you are using a custom palette, this value may be larger (though these
maps can be very hard to interpret). See the ’Advanced Options’ vignette
for details on the relationship between dim values and palette size.

preview A logical scalar; if TRUE (default), an image preview will be generated. If
FALSE, a vector with hex color values will be returned.

flip_axes A logical scalar; if TRUE the axes of the palette will be flipped. If FALSE
(default), the palette will be displayed on its original axes. Custom
palettes with ’dim’ greater than 4 cannot take advantage of flipping axes.

rotate_pal A logical scalar; if TRUE the palette will be rotated 180 degrees. If FALSE
(default), the palette will be displayed in its original orientation. Cus-
tom palettes with ’dim’ greater than 4 cannot take advantage of palette
rotation.

Details

The "Brown", "DkBlue", "DkCyan", and "GrPink" palettes were made by Joshua Stevens.
The "DkViolet" palette was made by Timo Grossenbacher and Angelo Zehr. Many of the
new palettes were inspired by Branson Fox’s earlier work to expand biscale.

Value

If preview = TRUE, an image preview of the legend will be returned. Otherwise, if preview
= FALSE, a named vector with class values for names and their corresponding hex color
values.

Examples
gray pink palette, 2x2
bi_pal(pal = "GrPink", dim = 2)

gray pink palette, 2x2 hex values
bi_pal(pal = "GrPink", dim = 2, preview = FALSE)

gray pink palette, 3x3
bi_pal(pal = "GrPink", dim = 3)

gray pink palette, 3x3 hex values
bi_pal(pal = "GrPink", dim = 3, preview = FALSE)

custom palette
custom_pal <- c(

"1-1" = "#cabed0", # low x, low y
"2-1" = "#ae3a4e", # high x, low y
"1-2" = "#4885c1", # low x, high y
"2-2" = "#3f2949" # high x, high y

https://www.joshuastevens.net/cartography/make-a-bivariate-choropleth-map/
https://timogrossenbacher.ch/2019/04/bivariate-maps-with-ggplot2-and-sf/

bi_scale_color 9

)

bi_pal(pal = custom_pal, dim = 2, preview = FALSE)

bi_scale_color Apply Bivariate Color to ggplot Object

Description

Applies the selected palette as the color aesthetic when geom_sf is used and the bi_class
variable is given as the color in the aesthetic mapping.

Usage

bi_scale_color(pal, dim = 3, flip_axes = FALSE, rotate_pal = FALSE, ...)

Arguments

pal A palette name or a vector containing a custom palette. See the help file
for bi_pal for complete list of built-in palette names. If you are providing
a custom palette, it must follow the formatting described in the ’Advanced
Options’ vignette.

dim The dimensions of the palette. To use the built-in palettes, this value
must be either 2, 3, or 4. A value of 3, for example, would be used to
create a three-by-three bivariate map with a total of 9 classes.
If you are using a custom palette, this value may be larger (though these
maps can be very hard to interpret). See the ’Advanced Options’ vignette
for details on the relationship between dim values and palette size.

flip_axes A logical scalar; if TRUE the axes of the palette will be flipped. If FALSE
(default), the palette will be displayed on its original axes. Custom
palettes with ’dim’ greater than 4 cannot take advantage of flipping axes.

rotate_pal A logical scalar; if TRUE the palette will be rotated 180 degrees. If FALSE
(default), the palette will be displayed in its original orientation. Cus-
tom palettes with ’dim’ greater than 4 cannot take advantage of palette
rotation.

... Arguments to pass to scale_color_manual

Value

A ggplot object with the given bivariate palette applied to the data.

See Also

bi_pal

10 bi_scale_fill

Examples
load dependencies
library(ggplot2)

add breaks, 3x3
data <- bi_class(stl_race_income, x = pctWhite, y = medInc, style = "quantile", dim = 3)

create map
plot <- ggplot() +

geom_sf(data = data, aes(color = bi_class), size = 2, show.legend = FALSE) +
bi_scale_color(pal = "GrPink", dim = 3)

bi_scale_fill Apply Bivariate Fill to ggplot Object

Description

Applies the selected palette as the fill aesthetic when geom_sf is used and the bi_class
variable is given as the fill in the aesthetic mapping.

Usage

bi_scale_fill(pal, dim = 3, flip_axes = FALSE, rotate_pal = FALSE, ...)

Arguments

pal A palette name or a vector containing a custom palette. See the help file
for bi_pal for complete list of built-in palette names. If you are providing
a custom palette, it must follow the formatting described in the ’Advanced
Options’ vignette.

dim The dimensions of the palette, either 2 for a two-by-two palette, 3 for a
three-by-three palette, or 4 for a four-by-four palette.

flip_axes A logical scalar; if TRUE the axes of the palette will be flipped. If FALSE
(default), the palette will be displayed on its original axes.

rotate_pal A logical scalar; if TRUE the palette will be rotated 180 degrees. If FALSE
(default), the palette will be displayed in its original orientation

... Arguments to pass to scale_fill_manual

Value

A ggplot object with the given bivariate palette applied to the data.

See Also

bi_pal

bi_theme 11

Examples
load dependencies
library(ggplot2)

add breaks, 3x3
data <- bi_class(stl_race_income, x = pctWhite, y = medInc, style = "quantile", dim = 3)

create map
plot <- ggplot() +

geom_sf(data = data, aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "GrPink", dim = 3)

bi_theme Basic Theme for Bivariate Mapping

Description

A theme for creating a simple, clean bivariate map using ggplot2.

Usage

bi_theme(
base_family = "sans",
base_size = 24,
bg_color = "#ffffff",
font_color = "#000000",
...

)

Arguments

base_family A character string representing the font family to be used in the map.
base_size A number representing the base size used in the map.
bg_color A character string containing the hex value for the desired color of the

map’s background.
font_color A character string containing the hex value for the desired color of the

map’s text.
... Arguments to pass on to ggplot2’s theme function

Examples
load suggested dependencies
library(ggplot2)
library(sf)

add breaks, 3x3

12 stl_race_income

data <- bi_class(stl_race_income, x = pctWhite, y = medInc, style = "quantile", dim = 3)

create map
ggplot() +

geom_sf(data = data, aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "GrPink", dim = 3) +
bi_theme()

stl_race_income Race and Median Income in St. Louis by Census Tract, 2017

Description

A simple features data set containing the geometry and associated attributes for the 2013-
2017 American Community Survey estimates for median household income and the percent-
age of white residents in St. Louis. This version of the sample data are stored as polygon
data.

Usage

data(stl_race_income)

Format

A data frame with 106 rows and 4 variables:

GEOID full GEOID string
pctWhite Percent of white residents per tract
medInc Median household income of tract
geometry simple features geometry

Source

tidycensus package

Examples

str(stl_race_income)
head(stl_race_income)
summary(stl_race_income$medInc)

stl_race_income_point 13

stl_race_income_point
Race and Median Income in St. Louis by Census Tract, 2017

Description

A simple features data set containing the geometry and associated attributes for the 2013-
2017 American Community Survey estimates for median household income and the per-
centage of white residents in St. Louis. This version of the sample data are stored as point
data.

Usage

data(stl_race_income_point)

Format

A data frame with 106 rows and 4 variables:

GEOID full GEOID string
pctWhite Percent of white residents per tract
medInc Median household income of tract
geometry simple features geometry

Source

tidycensus package

Examples
str(stl_race_income_point)
head(stl_race_income_point)
summary(stl_race_income_point$medInc)

Index

∗ datasets
stl_race_income, 12
stl_race_income_point, 13

bi_class, 2
bi_class_breaks, 3
bi_legend, 5
bi_pal, 5, 6, 7
bi_scale_color, 9
bi_scale_fill, 10
bi_theme, 11

geom_sf, 9, 10
ggplot2, 11

scale_color_manual, 9
scale_fill_manual, 10
stl_race_income, 12
stl_race_income_point, 13

14

	bi_class
	bi_class_breaks
	bi_legend
	bi_pal
	bi_scale_color
	bi_scale_fill
	bi_theme
	stl_race_income
	stl_race_income_point
	Index

